Repeated Inactivation of the First Committed Enzyme Underlies the Loss of Benzaldehyde Emission after the Selfing Transition in Capsella

نویسندگان

  • Claudia Sas
  • Frank Müller
  • Christian Kappel
  • Tyler V. Kent
  • Stephen I. Wright
  • Monika Hilker
  • Michael Lenhard
چکیده

The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate:CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate:CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for the Essential Arginine and Histidine Residues in Catalytic Activity of Glucose 6-Phosphate Dehydrogenase from Streptomyces aureofaciens

Glucose 6-phosphate dehydrogenase (G6PD) was purified from Streptomyces aureofaciens and inactivated with butanedione and diethylpyrocarbonate. Incubation of the enzyme with butanedione resulted in a rapid activity loss (80%) within 5 min, followed by a slow phase using a molar ratio to enzyme concentration of 100. Fluorescence studies showed a conformational change in the butanedione-modified ...

متن کامل

Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck.

Flowering plants often prevent selfing through mechanisms of self-incompatibility (S.I.). The loss of S.I. has occurred many times independently, because it provides short-term advantages in situations where pollinators or mates are rare. The genus Capsella, which is closely related to Arabidopsis, contains a pair of closely related diploid species, the self-incompatible Capsella grandiflora an...

متن کامل

Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella.

Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particula...

متن کامل

Thermal Inactivation and Aggregation of Lysozyme in the Presence of Nano- TiO2 and Nano-SiO2 in Neutral pH

Protein aggregation is a problem in biotechnology. High temperature is one of the most important reasons to enhance enzyme inactivation and aggregation in industrial systems. This work focuses on the effect of TiO2 and SiO2 nanoparticles on refolding and reactivation of lysozyme. In the presence of TiO2 and SiO2 nanoparticles, after enzyme heat treatm...

متن کامل

REASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA

Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016